Broadcast urea reduces N2O but increases NO emissions compared with conventional and shallow-applied anhydrous ammonia in a coarse-textured soil.
نویسندگان
چکیده
Despite the importance of anhydrous ammonia (AA) and urea as nitrogen (N) fertilizer sources in the United States, there have been few direct comparisons of their effects on soil nitrous oxide (NO) and nitric oxide (NO) emissions. We compared N oxide emissions, yields, and N fertilizer recovery efficiency (NFRE) in a corn ( L.) production system that used three different fertilizer practices: urea that was broadcast and incorporated (BU) and AA that was injected at a conventional depth (0.20 m) (AAc) and at a shallower depth (0.10 m) (AAs). Averaged over 2 yr in an irrigated loamy sand in Minnesota, growing season NO emissions increased in the order BU < AAc < AAs. In contrast, NO emissions were greater with BU than with AAc or AAs. Emissions of NO ranged from 0.5 to 1.4 kg N ha (50-140 g N Mg grain), while NO emissions ranged from 0.2 to 0.7 kg N ha (20-70 g N Mg grain). Emissions of total N oxides (NO + NO) increased in the order AAc < BU < AAs. Despite having the greatest emissions of NO and total N oxides, the AAs treatment had greater NFRE compared with the AAc treatment. These results provide additional evidence that AA emits more NO, but less NO, than broadcast urea and show that practices to reduce NO emissions do not always improve N use efficiency.
منابع مشابه
Nitrogen oxide and methane emissions under varying tillage and fertilizer management.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we us...
متن کاملInfluence of nitrapyrin on N2O losses from soil receiving fall-applied anhydrous ammonia
Fertilizer application in crop production agriculture has been identified as a major source of the greenhouse gas nitrous oxide. Thus, management strategies that increase fertilizer N use efficiency will reduce N2O emission. Anhydrous ammonia applied to cropland in the fall is recognized as amanagement practice that increases the risk of N loss from the rooting zone, however, this practice is s...
متن کاملEmissions of nitrous oxide and ammonia from a sandy soil following surface application and incorporation of cauliflower leaf residues
Vegetable production systems are often characterized by excessive nitrogen (N) fertilization and the incorporation of large amounts of post-harvest crop residues. This makes them particularly prone to ammonia (NH3) and nitrous oxide (N2O) emissions. Yet, urgently needed management strategies that can reduce these harmful emissions are missing, because underlying processes are not fully understo...
متن کاملNitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil
Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experimen...
متن کاملImpacts of Enhanced Efficiency Nitrogen Fertilizers on Yield-scaled N2o Emissions in Illinois Maize by Rebecca Graham Thesis
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) with about 300 times the global warming potential of CO2 and significant levels of this GHG come from agriculture. A two-year field experiment was conducted to assess the ability of enhanced efficiency nitrogen fertilizers (EENFs) to minimize yield-scaled N2O emissions while maintaining nutrient utilization and crop productivity of maize. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2011